Computer Architecture Concepts

Design of Arithmetic Unit, ISA,

CISC/RISC, Pipelines, Hazards,
Scheduling, and More



Contents

Arithmetic Unit Design

Instruction Set Architecture

CISC & RISC Scalar Processors

Linear & Nonlinear Pipeline Processors
Instruction Pipeline Design

Pipeline Hazards

Instruction Scheduling (Scoreboarding &
Tomasulo’s Algorithm)



Design of Arithmetic Unit

Performs add, subtract, multiply, divide
Components: ALU, shifters, adders, multipliers
Fixed-point vs Floating-point design

Examples: Carry Lookahead Adder, Booth
Multiplier



Instruction Set Architecture (ISA)

* Interface between hardware & software

* Defines instruction formats, addressing
modes, data types

* Registers & memory model



CISC Scalar Processors

Complex Instruction Set Computer

Rich instruction set, multiple cycles per
Instruction

Pros: Easier compiler design, powerful
Instructions

Cons: Slower execution, complex hardware



RISC Scalar Processors

Reduced Instruction Set Computer

Simple instructions, single-cycle execution
Pros: Faster, pipeline-friendly

Cons: More instructions needed per program



Linear Pipeline Processors

* Instructions executed in sequence of stages
* Example stages: IF > ID - EX > MEM - WB
* Improves throughput



Nonlinear Pipeline Processors

* Multiple execution paths (branching, parallel
units)

* More flexible but harder to control
* Used in superscalar designs



Instruction Pipeline Design

* Break instruction into smaller tasks
* Allows parallel execution
* Improves CPU performance



Pipeline Hazards

* Structural Hazards — resource conflict

* Data Hazards — dependency issues (RAW,
WAR, WAW)

* Control Hazards — due to branching



Instruction Scheduling

* Scoreboarding — centralized control to handle
hazards

* Tomasulo’s Algorithm — register renaming &
reservation stations



Branch Handling Techniques

* Branch prediction
* Delayed branching
* Speculative execution



Arithmetic Pipeline

* Pipeline for arithmetic operations (e.g.,
floating point)

* Stages: multiplication, normalization, rounding

* Used in scientific computing



Conclusion

Pipeline improves performance
RISC vs CISC tradeoffs

nstruction scheduling & branch handling
critical for efficiency




References

* Computer Architecture: A Quantitative
Approach — Hennessy & Patterson

* Computer Organization and Architecture —
Stallings



	Computer Architecture Concepts
	Contents
	Design of Arithmetic Unit
	Instruction Set Architecture (ISA)
	CISC Scalar Processors
	RISC Scalar Processors
	Linear Pipeline Processors
	Nonlinear Pipeline Processors
	Instruction Pipeline Design
	Pipeline Hazards
	Instruction Scheduling
	Branch Handling Techniques
	Arithmetic Pipeline
	Conclusion
	References

