Computer Architecture Concepts

Design of Arithmetic Unit, ISA,

CISC/RISC, Pipelines, Hazards,
Scheduling, and More
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Design of Arithmetic Unit

Performs add, subtract, multiply, divide
Components: ALU, shifters, adders, multipliers
Fixed-point vs Floating-point design

Examples: Carry Lookahead Adder, Booth
Multiplier



Instruction Set Architecture (ISA)

* Interface between hardware & software

* Defines instruction formats, addressing
modes, data types

* Registers & memory model



CISC Scalar Processors

Complex Instruction Set Computer

Rich instruction set, multiple cycles per
Instruction

Pros: Easier compiler design, powerful
Instructions

Cons: Slower execution, complex hardware



RISC Scalar Processors

Reduced Instruction Set Computer

Simple instructions, single-cycle execution
Pros: Faster, pipeline-friendly

Cons: More instructions needed per program



Linear Pipeline Processors

* Instructions executed in sequence of stages
* Example stages: IF > ID - EX > MEM - WB
* Improves throughput



Nonlinear Pipeline Processors

* Multiple execution paths (branching, parallel
units)

* More flexible but harder to control
* Used in superscalar designs



Instruction Pipeline Design

* Break instruction into smaller tasks
* Allows parallel execution
* Improves CPU performance



Pipeline Hazards

* Structural Hazards — resource conflict

* Data Hazards — dependency issues (RAW,
WAR, WAW)

* Control Hazards — due to branching



Instruction Scheduling

* Scoreboarding — centralized control to handle
hazards

* Tomasulo’s Algorithm — register renaming &
reservation stations



Branch Handling Techniques

* Branch prediction
* Delayed branching
* Speculative execution



Arithmetic Pipeline

* Pipeline for arithmetic operations (e.g.,
floating point)

* Stages: multiplication, normalization, rounding

* Used in scientific computing



Conclusion

Pipeline improves performance
RISC vs CISC tradeoffs

nstruction scheduling & branch handling
critical for efficiency
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